翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Mann's theorem : ウィキペディア英語版
Schnirelmann density
In additive number theory, the Schnirelmann density of a sequence of numbers is a way to measure how "dense" the sequence is. It is named after Russian mathematician L.G. Schnirelmann, who was the first to study it.〔Schnirelmann, L.G. (1930). "(On the additive properties of numbers )", first published in "Proceedings of the Don Polytechnic Institute in Novocherkassk" (in Russian), vol XIV (1930), pp. 3-27, and reprinted in "Uspekhi Matematicheskikh Nauk" (in Russian), 1939, no. 6, 9–25.〕〔Schnirelmann, L.G. (1933). First published as "(Über additive Eigenschaften von Zahlen )" in "Mathematische Annalen" (in German), vol 107 (1933), 649-690, and reprinted as "(On the additive properties of numbers )" in "Uspekhin. Matematicheskikh Nauk" (in Russian), 1940, no. 7, 7–46.〕
==Definition==
The Schnirelmann density of a set of natural numbers ''A'' is defined as
:\sigma A = \inf_n \frac,
where ''A''(''n'') denotes the number of elements of ''A'' not exceeding ''n'' and inf is infimum.〔Nathanson (1996) pp.191–192〕
The Schnirelmann density is well-defined even if the limit of ''A''(''n'')/''n'' as fails to exist (see asymptotic density).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Schnirelmann density」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.